Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.513
Filtrar
1.
Science ; 383(6687): eadi7342, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38452090

RESUMEN

Lineage plasticity-a state of dual fate expression-is required to release stem cells from their niche constraints and redirect them to tissue compartments where they are most needed. In this work, we found that without resolving lineage plasticity, skin stem cells cannot effectively generate each lineage in vitro nor regrow hair and repair wounded epidermis in vivo. A small-molecule screen unearthed retinoic acid as a critical regulator. Combining high-throughput approaches, cell culture, and in vivo mouse genetics, we dissected its roles in tissue regeneration. We found that retinoic acid is made locally in hair follicle stem cell niches, where its levels determine identity and usage. Our findings have therapeutic implications for hair growth as well as chronic wounds and cancers, where lineage plasticity is unresolved.


Asunto(s)
Células Madre Adultas , Plasticidad de la Célula , Epidermis , Folículo Piloso , Tretinoina , Cicatrización de Heridas , Animales , Ratones , Células Madre Adultas/citología , Células Madre Adultas/fisiología , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/fisiología , Plasticidad de la Célula/efectos de los fármacos , Plasticidad de la Célula/fisiología , Epidermis/efectos de los fármacos , Epidermis/fisiología , Folículo Piloso/citología , Folículo Piloso/efectos de los fármacos , Folículo Piloso/fisiología , Tretinoina/metabolismo , Tretinoina/farmacología , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/fisiología , Rejuvenecimiento/fisiología , Técnicas de Cultivo de Célula , Neoplasias/patología , Ratones Endogámicos C57BL
2.
Science ; 382(6673): 958-963, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37995223

RESUMEN

Adult neural stem cells (NSCs) contribute to lifelong brain plasticity. In the adult mouse ventricular-subventricular zone, NSCs are heterogeneous and, depending on their location in the niche, give rise to different subtypes of olfactory bulb (OB) interneurons. Here, we show that multiple regionally distinct NSCs, including domains that are usually quiescent, are recruited on different gestation days during pregnancy. Synchronized activation of these adult NSC pools generates transient waves of short-lived OB interneurons, especially in layers with less neurogenesis under homeostasis. Using spatial transcriptomics, we identified molecular markers of pregnancy-associated interneurons and showed that some subsets are temporarily needed for own pup recognition. Thus, pregnancy triggers transient yet behaviorally relevant neurogenesis, highlighting the physiological relevance of adult stem cell heterogeneity.


Asunto(s)
Interneuronas , Ventrículos Laterales , Conducta Materna , Neurogénesis , Plasticidad Neuronal , Bulbo Olfatorio , Embarazo , Olfato , Animales , Femenino , Ratones , Embarazo/fisiología , Células Madre Adultas/fisiología , Interneuronas/citología , Interneuronas/fisiología , Ventrículos Laterales/citología , Ventrículos Laterales/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Bulbo Olfatorio/citología , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/metabolismo , Transcriptoma , Conducta Materna/fisiología
3.
EMBO Rep ; 24(12): e57268, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37987220

RESUMEN

Intermittent fasting (IF) is a promising strategy to counteract ageing shown to increase the number of adult-born neurons in the dentate gyrus of mice. However, it is unclear which steps of the adult neurogenesis process are regulated by IF. The number of adult neural stem cells (NSCs) decreases with age in an activation-dependent manner and, to counteract this loss, adult NSCs are found in a quiescent state which ensures their long-term maintenance. We aimed to determine if and how IF affects adult NSCs in the hippocampus. To identify the effects of every-other-day IF on NSCs and all following steps in the neurogenic lineage, we combined fasting with lineage tracing and label retention assays. We show here that IF does not affect NSC activation or maintenance and, that contrary to previous reports, IF does not increase neurogenesis. The same results are obtained regardless of strain, sex, diet length, tamoxifen administration or new-born neuron identification method. Our data suggest that NSCs maintain homeostasis upon IF and that this intervention is not a reliable strategy to increase adult neurogenesis.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Ratones , Animales , Ayuno Intermitente , Neurogénesis , Neuronas , Hipocampo , Células Madre Adultas/fisiología
4.
Stem Cells Dev ; 32(9-10): 213-224, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36721381

RESUMEN

Adult neural stem cells (NSCs) are restricted to the two neurogenic regions of the mammalian brain, where they self-renew and generate progenies of multiple lineages, including neurons, astrocytes, and oligodendrocytes. Single-cell RNA sequencing technology, which reconstructs high-resolution transcriptional landscapes, provides valuable insights into cellular heterogeneity and developmental dynamics. In this review, we overviewed recent progress in the single-cell analyses of both conventional and unconventional NSCs. We discussed the heterogeneity among the stem cell pool and characterized the transcriptional alterations in aging and brain tumors. A comprehensive understanding of NSCs in physiological and pathological settings will provide insights for the rejuvenation of the aged brain and restoration of normal brain function in multiple neurological disorders.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Animales , Diferenciación Celular , Células-Madre Neurales/fisiología , Neuronas/fisiología , Neurogénesis , Encéfalo , Células Madre Adultas/fisiología , Mamíferos
5.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35216401

RESUMEN

Initially described as lytic bodies due to their degradative and recycling functions, lysosomes play a critical role in metabolic adaptation to nutrient availability. More recently, the contribution of lysosomal proteins to cell signaling has been established, and lysosomes have emerged as signaling hubs that regulate diverse cellular processes, including cell proliferation and cell fate. Deciphering these signaling pathways has revealed an extensive crosstalk between the lysosomal and cell cycle machineries that is only beginning to be understood. Recent studies also indicate that a number of lysosomal proteins are involved in the regulation of embryonic and adult stem cell fate and identity. In this review, we will focus on the role of the lysosome as a signaling platform with an emphasis on its function in integrating nutrient sensing with proliferation and cell cycle progression, as well as in stemness-related features, such as self-renewal and quiescence.


Asunto(s)
Células Madre Adultas/metabolismo , Células Madre Adultas/fisiología , Ciclo Celular/fisiología , Lisosomas/metabolismo , Lisosomas/fisiología , Redes y Vías Metabólicas/fisiología , Animales , Diferenciación Celular/fisiología , Humanos , Transducción de Señal/fisiología
6.
PLoS Genet ; 17(12): e1009250, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34860830

RESUMEN

Epigenetic mechanisms are gatekeepers for the gene expression patterns that establish and maintain cellular identity in mammalian development, stem cells and adult homeostasis. Amongst many epigenetic marks, methylation of histone 3 lysine 4 (H3K4) is one of the most widely conserved and occupies a central position in gene expression. Mixed lineage leukemia 1 (MLL1/KMT2A) is the founding mammalian H3K4 methyltransferase. It was discovered as the causative mutation in early onset leukemia and subsequently found to be required for the establishment of definitive hematopoiesis and the maintenance of adult hematopoietic stem cells. Despite wide expression, the roles of MLL1 in non-hematopoietic tissues remain largely unexplored. To bypass hematopoietic lethality, we used bone marrow transplantation and conditional mutagenesis to discover that the most overt phenotype in adult Mll1-mutant mice is intestinal failure. MLL1 is expressed in intestinal stem cells (ISCs) and transit amplifying (TA) cells but not in the villus. Loss of MLL1 is accompanied by loss of ISCs and a differentiation bias towards the secretory lineage with increased numbers and enlargement of goblet cells. Expression profiling of sorted ISCs revealed that MLL1 is required to promote expression of several definitive intestinal transcription factors including Pitx1, Pitx2, Foxa1, Gata4, Zfp503 and Onecut2, as well as the H3K27me3 binder, Bahcc1. These results were recapitulated using conditional mutagenesis in intestinal organoids. The stem cell niche in the crypt includes ISCs in close association with Paneth cells. Loss of MLL1 from ISCs promoted transcriptional changes in Paneth cells involving metabolic and stress responses. Here we add ISCs to the MLL1 repertoire and observe that all known functions of MLL1 relate to the properties of somatic stem cells, thereby highlighting the suggestion that MLL1 is a master somatic stem cell regulator.


Asunto(s)
Células Madre Adultas/fisiología , Diferenciación Celular/genética , N-Metiltransferasa de Histona-Lisina/genética , Insuficiencia Intestinal/genética , Mucosa Intestinal/patología , Proteína de la Leucemia Mieloide-Linfoide/genética , Animales , Trasplante de Médula Ósea , Metilación de ADN , Modelos Animales de Enfermedad , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Insuficiencia Intestinal/patología , Mucosa Intestinal/citología , Yeyuno/citología , Yeyuno/patología , Ratones , Ratones Transgénicos , Mutagénesis , Mutación , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Nicho de Células Madre
7.
Nat Commun ; 12(1): 6931, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836963

RESUMEN

Obesity and type 2 diabetes are associated with disturbances in insulin-regulated glucose and lipid fluxes and severe comorbidities including cardiovascular disease and steatohepatitis. Whole body metabolism is regulated by lipid-storing white adipocytes as well as "brown" and "brite/beige" adipocytes that express thermogenic uncoupling protein 1 (UCP1) and secrete factors favorable to metabolic health. Implantation of brown fat into obese mice improves glucose tolerance, but translation to humans has been stymied by low abundance of primary human beige adipocytes. Here we apply methods to greatly expand human adipocyte progenitors from small samples of human subcutaneous adipose tissue and then disrupt the thermogenic suppressor gene NRIP1 by CRISPR. Ribonucleoprotein consisting of Cas9 and sgRNA delivered ex vivo are fully degraded by the human cells following high efficiency NRIP1 depletion without detectable off-target editing. Implantation of such CRISPR-enhanced human or mouse brown-like adipocytes into high fat diet fed mice decreases adiposity and liver triglycerides while enhancing glucose tolerance compared to implantation with unmodified adipocytes. These findings advance a therapeutic strategy to improve metabolic homeostasis through CRISPR-based genetic enhancement of human adipocytes without exposing the recipient to immunogenic Cas9 or delivery vectors.


Asunto(s)
Adipocitos Marrones/trasplante , Sistemas CRISPR-Cas/genética , Intolerancia a la Glucosa/terapia , Obesidad/terapia , Termogénesis/genética , Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Células Madre Adultas/fisiología , Animales , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Hígado Graso/etiología , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Edición Génica/métodos , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos/genética , Masculino , Ratones , Proteína de Interacción con Receptores Nucleares 1/genética , Proteína de Interacción con Receptores Nucleares 1/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , ARN Guía de Kinetoplastida/genética , Grasa Subcutánea/citología
8.
Biomed Pharmacother ; 143: 112102, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34474347

RESUMEN

Hematopoietic stem cells (HSCs, CD34+ cells) have shown therapeutic efficacy for transplantation in various hematological disorders. However, a large quantity of HSCs is required for transplantation. Therefore, strategies to increase HSC numbers and preserve HSC functions through ex vivo culture are critically required. Here, we report that expansion medium supplemented with ASPP 049, a diarylheptanoid isolated from Curcuma comosa, and a cocktail of cytokines markedly increased numbers of adult CD34+ cells. Interestingly, phenotypically defined primitive HSCs (CD34+CD38-CD90+) were significantly increased under ASPP 049 treatment relative to control. ASPP 049 treatment also improved two functional properties of HSCs, as evidenced by an increased number of CD34+CD38- cells in secondary culture (self-renewal) and the growth of colony-forming units as assessed by colony formation assay (multilineage differentiation). Transplantation of cultured CD34+ cells into immunodeficient mice demonstrated the long-term reconstitution and differentiation ability of ASPP 049-expanded cells. RNA sequencing and KEGG analysis revealed that Hippo signaling was the most likely pathway involved in the effects of ASPP 049. These results suggest that ASPP 049 improved ex vivo expansion and functional preservation of expanded HSCs. Our findings provide a rationale for the use of ASPP 049 to grow HSCs prior to hematological disease treatment.


Asunto(s)
Células Madre Adultas/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Diarilheptanoides/farmacología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Adultas/fisiología , Células Madre Adultas/trasplante , Animales , Antígenos CD34/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Curcuma/química , Diarilheptanoides/aislamiento & purificación , Trasplante de Células Madre Hematopoyéticas , Humanos , Ratones Desnudos , Fenotipo , Factores de Tiempo
9.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360638

RESUMEN

Perinatal hypoxia-ischemia (HI) is a major cause of striatal injury. Delayed post-treatment with adult-sourced bone marrow-derived mesenchymal stem cells (BMSCs) increased the absolute number of striatal medium-spiny neurons (MSNs) following perinatal HI-induced brain injury. Yet extraction of BMSCs is more invasive and difficult compared to extraction of adipose-derived mesenchymal stem cells (AD-MSCs), which are easily sourced from subcutaneous tissue. Adult-sourced AD-MSCs are also superior to BMSCs in the treatment of adult ischemic stroke. Therefore, we investigated whether delayed post-treatment with adult-sourced AD-MSCs increased the absolute number of striatal MSNs following perinatal HI-induced brain injury. This included investigation of the location of injected AD-MSCs within the brain, which were widespread in the dorsolateral subventricular zone (dlSVZ) at 1 day after their injection. Cells extracted from adult rat tissue were verified to be stem cells by their adherence to tissue culture plastic and their expression of specific 'cluster of differentiation' (CD) markers. They were verified to be AD-MSCs by their ability to differentiate into adipocytes and osteocytes in vitro. Postnatal day (PN) 7/8, male Sprague-Dawley rats were exposed to either HI right-sided brain injury or no HI injury. The HI rats were either untreated (HI + Diluent), single stem cell-treated (HI + MSCs×1), or double stem cell-treated (HI + MSCs×2). Control rats that were matched-for-weight and litter had no HI injury and were treated with diluent (Uninjured + Diluent). Treatment with AD-MSCs or diluent occurred either 7 days, or 7 and 9 days, after HI. There was a significant increase in the absolute number of striatal dopamine and cyclic AMP-regulated phosphoprotein (DARPP-32)-positive MSNs in the double stem cell-treated (HI + MSCs×2) group and the normal control group compared to the HI + Diluent group at PN21. We therefore investigated two potential mechanisms for this effect of double-treatment with AD-MSCs. Specifically, did AD-MSCs: (i) increase the proliferation of cells within the dlSVZ, and (ii) decrease the microglial response in the dlSVZ and striatum? It was found that a primary repair mechanism triggered by double treatment with AD-MSCs involved significantly decreased striatal inflammation. The results may lead to the development of clinically effective and less invasive stem cell therapies for neonatal HI brain injury.


Asunto(s)
Cuerpo Estriado/citología , Hipoxia-Isquemia Encefálica/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/fisiología , Células Madre Adultas/fisiología , Animales , Animales Recién Nacidos , Masculino , Ratas , Ratas Sprague-Dawley , Tiempo de Tratamiento
10.
Cells ; 10(8)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34440814

RESUMEN

Adult neural stem and progenitor cells (NSPCs) contribute to learning, memory, maintenance of homeostasis, energy metabolism and many other essential processes. They are highly heterogeneous populations that require input from a regionally distinct microenvironment including a mix of neurons, oligodendrocytes, astrocytes, ependymal cells, NG2+ glia, vasculature, cerebrospinal fluid (CSF), and others. The diversity of NSPCs is present in all three major parts of the CNS, i.e., the brain, spinal cord, and retina. Intrinsic and extrinsic signals, e.g., neurotrophic and growth factors, master transcription factors, and mechanical properties of the extracellular matrix (ECM), collectively regulate activities and characteristics of NSPCs: quiescence/survival, proliferation, migration, differentiation, and integration. This review discusses the heterogeneous NSPC populations in the normal physiology and highlights their potentials and roles in injured/diseased states for regenerative medicine.


Asunto(s)
Células Madre Adultas/fisiología , Células-Madre Neurales/fisiología , Enfermedades Neurodegenerativas/patología , Traumatismos de la Médula Espinal/patología , Células Madre Adultas/citología , Células Madre Adultas/trasplante , Animales , Antígenos/metabolismo , Diferenciación Celular , Epéndimo/citología , Epéndimo/fisiología , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/trasplante , Enfermedades Neurodegenerativas/terapia , Proteoglicanos/metabolismo , Medicina Regenerativa , Traumatismos de la Médula Espinal/terapia
11.
Cells ; 10(8)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34440881

RESUMEN

Muscle stem cells (MuSCs) are essential for muscle growth, maintenance and repair. Over the past decade, experiments in Drosophila have been instrumental in understanding the molecular and cellular mechanisms regulating MuSCs (also known as adult muscle precursors, AMPs) during development. A large number of genetic tools available in fruit flies provides an ideal framework to address new questions which could not be addressed with other model organisms. This review reports the main findings revealed by the study of Drosophila AMPs, with a specific focus on how AMPs are specified and properly positioned, how they acquire their identity and which are the environmental cues controlling their behavior and fate. The review also describes the recent identification of the Drosophila adult MuSCs that have similar characteristics to vertebrates MuSCs. Integration of the different levels of MuSCs analysis in flies is likely to provide new fundamental knowledge in muscle stem cell biology largely applicable to other systems.


Asunto(s)
Desarrollo de Músculos/fisiología , Mioblastos/fisiología , Regeneración/fisiología , Células Madre Adultas/citología , Células Madre Adultas/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Drosophila/citología , Drosophila/fisiología , Modelos Biológicos , Mioblastos/citología , Transducción de Señal
12.
Sci China Life Sci ; 64(12): 2030-2044, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34341896

RESUMEN

Since the huge success of bone marrow transplantation technology in clinical practice, hematopoietic stem cells (HSCs) have become the gold standard for defining the properties of adult stem cells (ASCs). Here, we describe the "self-renewal, multi-lineage differentiation, apoptosis, rest, and trafficking" or "SMART" model, which has been developed based on data derived from studies of HSCs as the most well-characterized stem cell type. Given the potential therapeutic applications of ASCs, we delineate the key characteristics of HSCs using this model and speculate on the physiological relevance of stem cells identified in other tissues. Great strides are being made in understanding the biology of ASCs, and efforts are now underway to develop safe and effective ASC-based therapies in this emerging area.


Asunto(s)
Células Madre Hematopoyéticas/fisiología , Células Madre Adultas/fisiología , Apoptosis/fisiología , Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Humanos , Transducción de Señal
13.
PLoS Genet ; 17(7): e1009649, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34228720

RESUMEN

The differentiation efficiency of adult stem cells undergoes a significant decline in aged animals, which is closely related to the decline in organ function and age-associated diseases. However, the underlying mechanisms that ultimately lead to this observed decline of the differentiation efficiency of stem cells remain largely unclear. This study investigated Drosophila midguts and identified an obvious upregulation of caudal (cad), which encodes a homeobox transcription factor. This factor is traditionally known as a central regulator of embryonic anterior-posterior body axis patterning. This study reports that depletion of cad in intestinal stem/progenitor cells promotes quiescent intestinal stem cells (ISCs) to become activate and produce enterocytes in the midgut under normal gut homeostasis conditions. However, overexpression of cad results in the failure of ISC differentiation and intestinal epithelial regeneration after injury. Moreover, this study suggests that cad prevents intestinal stem/progenitor cell differentiation by modulating the Janus kinase/signal transducers and activators of the transcription pathway and Sox21a-GATAe signaling cascade. Importantly, the reduction of cad expression in intestinal stem/progenitor cells restrained age-associated gut hyperplasia in Drosophila. This study identified a function of the homeobox gene cad in the modulation of adult stem cell differentiation and suggested a potential gene target for the treatment of age-related diseases induced by age-related stem cell dysfunction.


Asunto(s)
Células Madre Adultas/metabolismo , Diferenciación Celular/genética , Proteínas de Drosophila/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Células Madre Adultas/fisiología , Factores de Edad , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Diferenciación Celular/fisiología , Proliferación Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Mucosa Intestinal/metabolismo , Intestinos/citología , Quinasas Janus/genética , Transducción de Señal/genética , Factores de Transcripción/genética
14.
Cells ; 10(5)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068607

RESUMEN

Tissue-specific stem cells give rise to new functional cells to maintain tissue homeostasis and restore damaged tissue after injury. To ensure proper brain functions in the adult brain, neural stem cells (NSCs) continuously generate newborn neurons that integrate into pre-existing neuronal networks. Proliferation, as well as neurogenesis of NSCs, are exquisitely controlled by extrinsic and intrinsic factors, and their underlying mechanisms have been extensively studied with the goal of enhancing the neurogenic capacity of NSCs for regenerative medicine. However, neurogenesis of endogenous NSCs alone is insufficient to completely repair brains damaged by neurodegenerative diseases and/or injury because neurogenic areas are limited and few neurons are produced in the adult brain. An innovative approach towards replacing damaged neurons is to induce conversion of non-neuronal cells residing in injured sites into neurons by a process referred to as direct reprogramming. This review describes extrinsic and intrinsic factors controlling NSCs and neurogenesis in the adult brain and discusses prospects for their applications. It also describes direct neuronal reprogramming technology holding promise for future clinical applications.


Asunto(s)
Células Madre Adultas/fisiología , Encéfalo/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Animales , Astrocitos/citología , Diferenciación Celular/fisiología , Linaje de la Célula , Proliferación Celular , Matriz Extracelular/metabolismo , Hipocampo/metabolismo , Humanos , Ratones , Microglía , Red Nerviosa , Enfermedades Neurodegenerativas , Neuronas/metabolismo , Neuronas/fisiología , Medicina Regenerativa , Transducción de Señal , Nicho de Células Madre/fisiología , Transcriptoma
15.
Artículo en Inglés | MEDLINE | ID: mdl-34187808

RESUMEN

While some animals, such as planaria and hydra, appear to be capable of seemingly endless cycles of regeneration, most animals experience a gradual decline in fitness and ultimately die. The progressive loss of cell and tissue function, leading to senescence and death, is generally referred to as aging. Adult ("tissue") stem cells maintain tissue homeostasis and facilitate repair; however, age-related changes in stem cell function over time are major contributors to loss of organ function or disease in older individuals. Therefore, considerable effort is being invested in restoring stem cell function to counter degenerative diseases and age-related tissue dysfunction. Here, we will review strategies that could be used to restore stem cell function, including the use of environmental interventions, such as diet and exercise, heterochronic approaches, and cellular reprogramming. Maintaining optimal stem cell function and tissue homeostasis into late life will likely extend the amount of time older adults are able to be independent and lead healthy lives.


Asunto(s)
Células Madre Adultas/fisiología , Envejecimiento/fisiología , Reprogramación Celular , Regeneración , Rejuvenecimiento , Animales , Dieta , Ejercicio Físico , Envejecimiento Saludable , Humanos , Parabiosis , Medicina Regenerativa
16.
Biol Reprod ; 105(4): 987-1001, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34104939

RESUMEN

The epididymis is composed of a pseudostratified epithelium that is comprised of various cell types. Studies have shown that rat basal cells share common properties with adult stem cells and begin to differentiate in vitro in response to fibroblast growth factor and 5α-dihydrotestosterone. The characterization of rat basal cells is therefore necessary to fully understand the role of these cells. The objectives of this study were to assess the ability of single basal cells to develop organoids and to assess their ability to self-renew and differentiate in vitro. We isolated basal cells from the rat epididymis and established three-dimensional cell cultures from the basal and nonbasal cell fractions. Organoids were formed by single adult epididymal basal cells. Organoids were dissociated into single basal cells, which were able to reform new organoids, and were maintained over 10 generations. Long-term culture of organoids revealed that these cells could be differentiated into cells expressing the principal cell markers aquaporin 9 and cystic fibrosis transmembrane conductance regulator. Electron microscopy demonstrated that organoids were composed of several polarized cell types displaying microvilli and the ability to form tight junctions. Additionally, organoids could be formed by basal cells from either the proximal or distal region of the epididymis and are able to secrete clusterin, a protein implicated in the maturation of spermatozoa. These data indicate that rat basal cells can be used to derive epididymal organoids and further support that notion that these may represent a stem cell population in the epididymis.


Asunto(s)
Células Madre Adultas/fisiología , Diferenciación Celular , Epidídimo/fisiología , Organoides/fisiología , Ratas/fisiología , Animales , Técnicas In Vitro , Masculino , Ratas Sprague-Dawley
17.
Science ; 372(6547): 1205-1209, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34112692

RESUMEN

Quiescent neural stem cells (NSCs) in the adult mouse ventricular-subventricular zone (V-SVZ) undergo activation to generate neurons and some glia. Here we show that platelet-derived growth factor receptor beta (PDGFRß) is expressed by adult V-SVZ NSCs that generate olfactory bulb interneurons and glia. Selective deletion of PDGFRß in adult V-SVZ NSCs leads to their release from quiescence, uncovering gliogenic domains for different glial cell types. These domains are also recruited upon injury. We identify an intraventricular oligodendrocyte progenitor derived from NSCs inside the brain ventricles that contacts supraependymal axons. Together, our findings reveal that the adult V-SVZ contains spatial domains for gliogenesis, in addition to those for neurogenesis. These gliogenic NSC domains tend to be quiescent under homeostasis and may contribute to brain plasticity.


Asunto(s)
Células Madre Adultas/fisiología , Ventrículos Cerebrales/fisiología , Ventrículos Laterales/fisiología , Células-Madre Neurales/fisiología , Neuroglía/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Astrocitos/citología , Astrocitos/fisiología , Axones/fisiología , Diferenciación Celular , División Celular , Ventrículos Cerebrales/citología , Epéndimo/citología , Epéndimo/fisiología , Femenino , Perfilación de la Expresión Génica , Homeostasis , Ventrículos Laterales/citología , Masculino , Ratones , Neurogénesis , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Oligodendroglía/citología , Oligodendroglía/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética
18.
Dev Biol ; 477: 133-144, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34044021

RESUMEN

The Drosophila testis is a model organism stem cell niche in which two stem cell populations coordinate together to produce sperm; thus, these stem cells must be balanced in the niche. Merlin, a tumor-suppressor and human disease gene required for contact inhibition of proliferation, is known to limit the proliferation of the somatic cyst stem cells in the testis niche. Expanded encodes a protein that is structurally similar to Merlin in Drosophila, and is semi-redundant with Merlin in multiple tissues. We found that expanded depletion caused similar cyst lineage cell over-proliferation as observed with Merlin, and double mutants showed more severe phenotypes than either gene individually. Thus, these genes have partially redundant functions in the cyst lineage cells of this niche. We also expressed non-phosphorylatable constitutively "tumor suppressing" alleles of Merlin in cyst lineage cells, and surprisingly, we observed a similar cyst lineage over-proliferation phenotype. Merlin is known to impact multiple different signaling pathways to exert its effect on proliferation. We found that the Merlin loss of function phenotype was associated with an increase in MAPK/ERK signaling, consistent with Merlin's established role in transmembrane receptor inhibition. Constitutive Merlin displayed a reduction in both MAPK/ERK signaling and PI3K/Tor signaling. PI3K/Tor signaling is required for cyst cell differentiation, and inhibition of this pathway by Merlin activation phenocopied the Tor cyst lineage loss of function phenotype. Thus, Merlin impacts and integrates the activity of multiple signaling pathways in the testis niche. The ability of Merlin to dynamically change its activity via phosphorylation in response to local contact cues provides an intriguing mechanism whereby the signaling pathways that control these stem cells might be dynamically regulated in response to the division of a neighboring germ cell.


Asunto(s)
Células Madre Adultas/fisiología , Proliferación Celular/fisiología , Proteínas de Drosophila/fisiología , Drosophila/citología , Proteínas de la Membrana/fisiología , Neurofibromina 2/fisiología , Transducción de Señal , Testículo/citología , Animales , Linaje de la Célula , Drosophila/embriología , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Modelos Biológicos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Péptidos de Invertebrados/metabolismo , Testículo/embriología
19.
Sci China Life Sci ; 64(12): 2045-2059, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33948870

RESUMEN

The adult lung, a workhorse for gas exchange, is continually subjected to a barrage of assaults from the inhaled particles and pathogens. Hence, homeostatic maintenance is of paramount importance. Epithelial stem cells interact with their particular niche in the adult lung to orchestrate both natural tissue rejuvenation and robust post-injury regeneration. Advances in single-cell sequencing, lineage tracing, and living tissue imaging have deepened our understanding about stem cell heterogeneities, transition states, and specific cell lineage markers. In this review, we provided an overview of the known stem/progenitor cells and their subpopulations in different regions of the adult lung, and explored the regulatory networks in stem cells and their respective niche which collectively coordinated stem cell quiescence and regeneration states. We finally discussed relationships between dysregulated stem cell function and lung disease.


Asunto(s)
Células Madre Adultas/fisiología , Homeostasis/fisiología , Pulmón/citología , Adulto , Animales , Humanos , Fibrosis Pulmonar Idiopática/fisiopatología , Pulmón/fisiología , Alveolos Pulmonares/citología , Regeneración/fisiología , Mucosa Respiratoria/citología , Roedores
20.
Mol Reprod Dev ; 88(6): 379-394, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34014590

RESUMEN

Endometrial damage is an important cause of female reproductive problems, manifested as menstrual abnormalities, infertility, recurrent pregnancy loss, and other complications. These conditions are collectively termed "Asherman syndrome" (AS) and are typically associated with recurrent induced pregnancy terminations, repeated diagnostic curettage and intrauterine infections. Cancer treatment also has unexpected detrimental side effects on endometrial function in survivors independently of ovarian effects. Endometrial stem cells act in the regeneration of the endometrium and in repair through direct differentiation or paracrine effects. Nonendometrial adult stem cells, such as bone marrow-derived mesenchymal stem cells and umbilical cord-derived mesenchymal stem cells, with autologous and allogenic applications, can also repair injured endometrial tissue in animal models of AS and in human studies. However, there remains a lack of research on the repair of the damaged endometrium after the reversal of tumors, especially endometrial cancers. Here, we review the biological mechanisms of endometrial regeneration, and research progress and challenges for adult stem cell therapy for damaged endometrium, and discuss the potential applications of their use for endometrial repair after cancer remission, especially in endometrial cancers. Successful application of such cells will improve reproductive parameters in patients with AS or cancer. Significance: The endometrium is the fertile ground for embryos, but damage to the endometrium will greatly impair female fertility. Adult stem cells combined with tissue engineering scaffold materials or not have made great progress in repairing the injured endometrium due to benign lesions. However, due to the lack of research on the repair of the damaged endometrium caused by malignant tumors or tumor therapies, the safety and effectiveness of such stem cell-based therapies need to be further explored. This review focuses on the molecular insights and clinical application potential of adult stem cells in endometrial regeneration and discusses the possible challenges or difficulties that need to be overcome in stem cell-based therapies for tumor survivors. The development of adult stem cell-related new programs will help repair damaged endometrium safely and effectively and meet fertility needs in tumor survivors.


Asunto(s)
Células Madre Adultas/fisiología , Endometrio/fisiología , Ginatresia/fisiopatología , Regeneración/fisiología , Aborto Habitual/etiología , Aborto Habitual/prevención & control , Células Madre Adultas/trasplante , Amnios/citología , Animales , Antígenos de Diferenciación/análisis , Células de la Médula Ósea , Senescencia Celular , Modelos Animales de Enfermedad , Neoplasias Endometriales/fisiopatología , Neoplasias Endometriales/terapia , Endometrio/irrigación sanguínea , Endometrio/citología , Endometrio/lesiones , Femenino , Sangre Fetal/citología , Ginatresia/complicaciones , Ginatresia/terapia , Humanos , Hidrogeles , Células Madre Pluripotentes Inducidas/trasplante , Infertilidad Femenina/etiología , Infertilidad Femenina/terapia , Menstruación , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Mucosa Bucal/citología , Células de Población Lateral/citología , Nicho de Células Madre , Ingeniería de Tejidos/métodos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...